Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
N Engl J Med ; 390(12): 1092-1104, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38507752

RESUMO

BACKGROUND: Giant axonal neuropathy is a rare, autosomal recessive, pediatric, polysymptomatic, neurodegenerative disorder caused by biallelic loss-of-function variants in GAN, the gene encoding gigaxonin. METHODS: We conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN (a self-complementary adeno-associated virus-based gene therapy containing the GAN transgene) in children with giant axonal neuropathy. Safety was the primary end point. The key secondary clinical end point was at least a 95% posterior probability of slowing the rate of change (i.e., slope) in the 32-item Motor Function Measure total percent score at 1 year after treatment, as compared with the pretreatment slope. RESULTS: One of four intrathecal doses of scAAV9/JeT-GAN was administered to 14 participants - 3.5×1013 total vector genomes (vg) (in 2 participants), 1.2×1014 vg (in 4), 1.8×1014 vg (in 5), and 3.5×1014 vg (in 3). During a median observation period of 68.7 months (range, 8.6 to 90.5), of 48 serious adverse events that had occurred, 1 (fever) was possibly related to treatment; 129 of 682 adverse events were possibly related to treatment. The mean pretreatment slope in the total cohort was -7.17 percentage points per year (95% credible interval, -8.36 to -5.97). At 1 year after treatment, posterior mean changes in slope were -0.54 percentage points (95% credible interval, -7.48 to 6.28) with the 3.5×1013-vg dose, 3.23 percentage points (95% credible interval, -1.27 to 7.65) with the 1.2×1014-vg dose, 5.32 percentage points (95% credible interval, 1.07 to 9.57) with the 1.8×1014-vg dose, and 3.43 percentage points (95% credible interval, -1.89 to 8.82) with the 3.5×1014-vg dose. The corresponding posterior probabilities for slowing the slope were 44% (95% credible interval, 43 to 44); 92% (95% credible interval, 92 to 93); 99% (95% credible interval, 99 to 99), which was above the efficacy threshold; and 90% (95% credible interval, 89 to 90). Between 6 and 24 months after gene transfer, sensory-nerve action potential amplitudes increased, stopped declining, or became recordable after being absent in 6 participants but remained absent in 8. CONCLUSIONS: Intrathecal gene transfer with scAAV9/JeT-GAN for giant axonal neuropathy was associated with adverse events and resulted in a possible benefit in motor function scores and other measures at some vector doses over a year. Further studies are warranted to determine the safety and efficacy of intrathecal AAV-mediated gene therapy in this disorder. (Funded by the National Institute of Neurological Disorders and Stroke and others; ClinicalTrials.gov number, NCT02362438.).


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Neuropatia Axonal Gigante , Criança , Humanos , Proteínas do Citoesqueleto/genética , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Neuropatia Axonal Gigante/genética , Neuropatia Axonal Gigante/terapia , Transgenes , Injeções Espinhais
2.
Nat Commun ; 14(1): 4165, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443299

RESUMO

Intrinsically disordered regions (IDRs) are essential for membrane receptor regulation but often remain unresolved in structural studies. TRPV4, a member of the TRP vanilloid channel family involved in thermo- and osmosensation, has a large N-terminal IDR of approximately 150 amino acids. With an integrated structural biology approach, we analyze the structural ensemble of the TRPV4 IDR and the network of antagonistic regulatory elements it encodes. These modulate channel activity in a hierarchical lipid-dependent manner through transient long-range interactions. A highly conserved autoinhibitory patch acts as a master regulator by competing with PIP2 binding to attenuate channel activity. Molecular dynamics simulations show that loss of the interaction between the PIP2-binding site and the membrane reduces the force exerted by the IDR on the structured core of TRPV4. This work demonstrates that IDR structural dynamics are coupled to TRPV4 activity and highlights the importance of IDRs for TRP channel function and regulation.


Assuntos
Fenômenos Fisiológicos Celulares , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Domínios Proteicos , Sequências Reguladoras de Ácido Nucleico , Lipídeos
3.
J Neuromuscul Dis ; 10(5): 937-954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37458045

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is caused by bi-allelic, recessive mutations of the survival motor neuron 1 (SMN1) gene and reduced expression levels of the survival motor neuron (SMN) protein. Degeneration of alpha motor neurons in the spinal cord causes progressive skeletal muscle weakness. The wide range of disease severities, variable rates of decline, and heterogenous clinical responses to approved disease-modifying treatment remain poorly understood and limit the ability to optimize treatment for patients. Validation of a reliable biomarker(s) with the potential to support early diagnosis, inform disease prognosis and therapeutic suitability, and/or confirm response to treatment(s) represents a significant unmet need in SMA. OBJECTIVES: The SMA Multidisciplinary Biomarkers Working Group, comprising 11 experts in a variety of relevant fields, sought to determine the most promising candidate biomarker currently available, determine key knowledge gaps, and recommend next steps toward validating that biomarker for SMA. METHODS: The Working Group engaged in a modified Delphi process to answer questions about candidate SMA biomarkers. Members participated in six rounds of reiterative surveys that were designed to build upon previous discussions. RESULTS: The Working Group reached a consensus that neurofilament (NF) is the candidate biomarker best poised for further development. Several important knowledge gaps were identified, and the next steps toward filling these gaps were proposed. CONCLUSIONS: NF is a promising SMA biomarker with the potential for prognostic, predictive, and pharmacodynamic capabilities. The Working Group has identified needed information to continue efforts toward the validation of NF as a biomarker for SMA.


Assuntos
Atrofia Muscular Espinal , Humanos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/tratamento farmacológico , Neurônios Motores/metabolismo , Biomarcadores/metabolismo , Mutação
4.
Nat Commun ; 14(1): 3732, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353484

RESUMO

Crosstalk between ion channels and small GTPases is critical during homeostasis and disease, but little is known about the structural underpinnings of these interactions. TRPV4 is a polymodal, calcium-permeable cation channel that has emerged as a potential therapeutic target in multiple conditions. Gain-of-function mutations also cause hereditary neuromuscular disease. Here, we present cryo-EM structures of human TRPV4 in complex with RhoA in the ligand-free, antagonist-bound closed, and agonist-bound open states. These structures reveal the mechanism of ligand-dependent TRPV4 gating. Channel activation is associated with rigid-body rotation of the intracellular ankyrin repeat domain, but state-dependent interaction with membrane-anchored RhoA constrains this movement. Notably, many residues at the TRPV4-RhoA interface are mutated in disease and perturbing this interface by introducing mutations into either TRPV4 or RhoA increases TRPV4 channel activity. Together, these results suggest that RhoA serves as an auxiliary subunit for TRPV4, regulating TRPV4-mediated calcium homeostasis and disruption of TRPV4-RhoA interactions can lead to TRPV4-related neuromuscular disease. These insights will help facilitate TRPV4 therapeutics development.


Assuntos
Canais de Cátion TRPV , Proteína rhoA de Ligação ao GTP , Humanos , Repetição de Anquirina , Cálcio/metabolismo , Mutação , Canais de Cátion TRPV/química , Proteína rhoA de Ligação ao GTP/química
5.
Acta Neuropathol Commun ; 11(1): 53, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997967

RESUMO

Intercellular communication between axons and Schwann cells is critical for attaining the complex morphological steps necessary for axon maturation. In the early onset motor neuron disease spinal muscular atrophy (SMA), many motor axons are not ensheathed by Schwann cells nor grow sufficiently in radial diameter to become myelinated. These developmentally arrested motor axons are dysfunctional and vulnerable to rapid degeneration, limiting efficacy of current SMA therapeutics. We hypothesized that accelerating SMA motor axon maturation would improve their function and reduce disease features. A principle regulator of peripheral axon development is neuregulin 1 type III (NRG1-III). Expressed on axon surfaces, it interacts with Schwann cell receptors to mediate axon ensheathment and myelination. We examined NRG1 mRNA and protein expression levels in human and mouse SMA tissues and observed reduced expression in SMA spinal cord and in ventral, but not dorsal root axons. To determine the impact of neuronal NRG1-III overexpression on SMA motor axon development, we bred NRG1-III overexpressing mice to SMA∆7 mice. Neonatally, elevated NRG1-III expression increased SMA ventral root size as well as axon segregation, diameter, and myelination resulting in improved motor axon conduction velocities. NRG1-III was not able to prevent distal axonal degeneration nor improve axon electrophysiology, motor behavior, or survival of older mice. Together these findings demonstrate that early SMA motor axon developmental impairments can be ameliorated by a molecular strategy independent of SMN replacement providing hope for future SMA combinatorial therapeutic approaches.


Assuntos
Atrofia Muscular Espinal , Neuregulina-1 , Animais , Humanos , Camundongos , Axônios/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Bainha de Mielina/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo
6.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993766

RESUMO

Crosstalk between ion channels and small GTPases is critical during homeostasis and disease 1 , but little is known about the structural underpinnings of these interactions. TRPV4 is a polymodal, calcium-permeable cation channel that has emerged as a potential therapeutic target in multiple conditions 2-5 . Gain-of-function mutations also cause hereditary neuromuscular disease 6-11 . Here, we present cryo-EM structures of human TRPV4 in complex with RhoA in the apo, antagonist-bound closed, and agonist-bound open states. These structures reveal the mechanism of ligand-dependent TRPV4 gating. Channel activation is associated with rigid-body rotation of the intracellular ankyrin repeat domain, but state-dependent interaction with membrane-anchored RhoA constrains this movement. Notably, many residues at the TRPV4-RhoA interface are mutated in disease and perturbing this interface by introducing mutations into either TRPV4 or RhoA increases TRPV4 channel activity. Together, these results suggest that the interaction strength between TRPV4 and RhoA tunes TRPV4-mediated calcium homeostasis and actin remodeling, and that disruption of TRPV4-RhoA interactions leads to TRPV4-related neuromuscular disease, findings that will guide TRPV4 therapeutics development.

7.
Ann Neurol ; 93(3): 563-576, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36203352

RESUMO

OBJECTIVE: The paucity of longitudinal natural history studies in MPZ neuropathy remains a barrier to clinical trials. We have completed a longitudinal natural history study in patients with MPZ neuropathies across 13 sites of the Inherited Neuropathies Consortium. METHODS: Change in Charcot-Marie-Tooth Examination Score (CMTES) and Rasch modified CMTES (CMTES-R) were evaluated using longitudinal regression over a 5-year period in subjects with MPZ neuropathy. Data from 139 patients with MPZ neuropathy were examined. RESULTS: The average baseline CMTES and CMTES-R were 10.84 (standard deviation [SD] = 6.0, range = 0-28) and 14.60 (SD = 7.56, range = 0-32), respectively. A mixed regression model showed significant change in CMTES at years 2-5 (mean change from baseline of 0.87 points at 2 years, p = 0.008). Subgroup analysis revealed greater change in CMTES at 2 years in subjects with axonal as compared to demyelinating neuropathy (mean change of 1.30 points [p = 0.016] vs 0.06 points [p = 0.889]). Patients with a moderate baseline neuropathy severity also showed more notable change, by estimate, than those with mild or severe neuropathy (mean 2-year change of 1.14 for baseline CMTES 8-14 [p = 0.025] vs -0.03 for baseline CMTES 0-7 [p = 0.958] and 0.25 for baseline CMTES ≥ 15 [p = 0.6897]). The progression in patients harboring specific MPZ mutations was highly variable. INTERPRETATION: CMTES is sensitive to change over time in adult patients with axonal but not demyelinating forms of MPZ neuropathy. Change in CMTES was greatest in patients with moderate baseline disease severity. These findings will inform future clinical trials of MPZ neuropathies. ANN NEUROL 2023;93:563-576.


Assuntos
Doença de Charcot-Marie-Tooth , Adulto , Humanos , Doença de Charcot-Marie-Tooth/genética , Estudos Longitudinais , Proteína P0 da Mielina/genética , Mutação , Progressão da Doença
8.
J Clin Pharmacol ; 62 Suppl 1: S36-S52, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36106778

RESUMO

We are living in a golden age of medicine in which the availability of prenatal diagnosis, fetal therapy, and gene therapy/editing make it theoretically possible to repair almost any defect in the genetic code. Furthermore, the ability to diagnose genetic disorders before birth and the presence of established surgical techniques enable these therapies to be delivered safely to the fetus. Prenatal therapies are generally used in the second or early third trimester for severe, life-threatening disorders for which there is a clear rationale for intervening before birth. While there has been promising work for prenatal gene therapy in preclinical models, the path to a clinical prenatal gene therapy approach is complex. We recently held a conference with the University of California, San Francisco-Stanford Center of Excellence in Regulatory Science and Innovation, researchers, patient advocates, regulatory (members of the Food and Drug Administration), and other stakeholders to review the scientific background and rationale for prenatal somatic cell gene therapy for severe monogenic diseases and initiate a dialogue toward a safe regulatory path for phase 1 clinical trials. This review represents a summary of the considerations and discussions from these conversations.


Assuntos
Feto , Terapia Genética , Feminino , Humanos , Parto , Gravidez , Estados Unidos , United States Food and Drug Administration
9.
Nat Rev Dis Primers ; 8(1): 52, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927425

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in SMN1 (encoding survival motor neuron protein (SMN)). Reduced expression of SMN leads to loss of α-motor neurons, severe muscle weakness and often early death. Standard-of-care recommendations for multidisciplinary supportive care of SMA were established in the past few decades. However, improved understanding of the pathogenetic mechanisms of SMA has led to the development of different therapeutic approaches. Three treatments that increase SMN expression by distinct molecular mechanisms, administration routes and tissue biodistributions have received regulatory approval with others in clinical development. The advent of the new therapies is redefining standards of care as in many countries most patients are treated with one of the new therapies, leading to the identification of emerging new phenotypes of SMA and a renewed characterization of demographics owing to improved patient survival.


Assuntos
Atrofia Muscular Espinal , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Mutação , Fenótipo
10.
Prenat Diagn ; 42(11): 1409-1419, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029101

RESUMO

OBJECTIVE: In utero SMA treatment could improve survival and neurologic outcomes. We investigated the attitudes of patients and parents with SMA regarding prenatal diagnosis, fetal therapies, and clinical trials. METHODS: A multidisciplinary team designed a questionnaire that Cure SMA electronically distributed to parents and patients (>18 years old) affected by SMA. Multivariable ordinal logistic regression was used to analyze associations between respondent characteristics and attitudes. RESULTS: Of 114 respondents (60% of whom were patients), only 2 were prenatally diagnosed. However, 91% supported prenatal testing and 81% felt there had been a delay in their diagnosis. Overall, 55% would enroll in a phase I trial for fetal antisense oligonucleotide (ASO) while 79% would choose an established fetal ASO/small molecule therapy. Overall, 61% would enroll in fetal gene therapy trials and 87% would choose fetal gene therapies. Patients were less likely to enroll in a fetal gene therapy trial than parents enrolling a child (OR 0.31, p < 0.05). Older parental age and believing there had been excessive delay in diagnosis were associated with an interest in enrolling in a fetal ASO trial (OR 1.04, 7.38, respectively, p < 0.05). CONCLUSION: In utero therapies are promising for severe genetic diseases. Patients with SMA and their parents view prenatal testing and therapies positively, with gene therapy being favored.


Assuntos
Terapias Fetais , Atrofia Muscular Espinal , Feminino , Humanos , Gravidez , Atitude , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Oligonucleotídeos Antissenso , Diagnóstico Pré-Natal , Adulto
11.
Nat Med ; 28(7): 1348-1349, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35840728
12.
J Biol Chem ; 298(4): 101826, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35300980

RESUMO

Ubiquitin (Ub)-mediated regulation of plasmalemmal ion channel activity canonically occurs via stimulation of endocytosis. Whether ubiquitination can modulate channel activity by alternative mechanisms remains unknown. Here, we show that the transient receptor potential vanilloid 4 (TRPV4) cation channel is multiubiquitinated within its cytosolic N-terminal and C-terminal intrinsically disordered regions (IDRs). Mutagenizing select lysine residues to block ubiquitination of the N-terminal but not C-terminal IDR resulted in a marked elevation of TRPV4-mediated intracellular calcium influx, without increasing cell surface expression levels. Conversely, enhancing TRPV4 ubiquitination via expression of an E3 Ub ligase reduced TRPV4 channel activity but did not decrease plasma membrane abundance. These results demonstrate Ub-dependent regulation of TRPV4 channel function independent of effects on plasma membrane localization. Consistent with ubiquitination playing a key negative modulatory role of the channel, gain-of-function neuropathy-causing mutations in the TRPV4 gene led to reduced channel ubiquitination in both cellular and Drosophila models of TRPV4 neuropathy, whereas increasing mutant TRPV4 ubiquitination partially suppressed channel overactivity. Together, these data reveal a novel mechanism via which ubiquitination of an intracellular flexible IDR domain modulates ion channel function independently of endocytic trafficking and identify a contributory role for this pathway in the dysregulation of TRPV4 channel activity by neuropathy-causing mutations.


Assuntos
Canais de Cátion TRPV , Ubiquitinação , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo , Humanos , Camundongos , Mutação , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Ubiquitina/metabolismo
13.
Bioessays ; 44(6): e2100288, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297520

RESUMO

Transient receptor potential vanilloid 4 (TRPV4), a member of the TRP superfamily, is a broadly expressed, cell surface-localized cation channel that is activated by a variety of environmental stimuli. Importantly, TRPV4 has been increasingly implicated in the regulation of cellular morphology. Here we propose that TRPV4 and the cytoskeletal remodeling small GTPase RhoA together constitute an environmentally sensitive signaling complex that contributes to pathological cell cytoskeletal alterations during neurological injury and disease. Supporting this hypothesis is our recent work demonstrating direct physical and bidirectional functional interactions of TRPV4 with RhoA, which can lead to activation of RhoA and reorganization of the actin cytoskeleton. Furthermore, a confluence of evidence implicates TRPV4 and/or RhoA in pathological responses triggered by a range of acute neurological insults ranging from stroke to traumatic injury. While initiated by a variety of insults, TRPV4-RhoA signaling may represent a common pathway that disrupts axonal regeneration and blood-brain barrier integrity. These insights also suggest that TRPV4 inhibition may represent a safe, feasible, and precise therapeutic strategy for limiting pathological TRPV4-RhoA activation in a range of neurological diseases.


Assuntos
Citoesqueleto , Canais de Cátion TRPV , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Transdução de Sinais , Canais de Cátion TRPV/metabolismo
14.
Ann Clin Transl Neurol ; 9(3): 375-391, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35170874

RESUMO

OBJECTIVE: Distinct dominant mutations in the calcium-permeable ion channel TRPV4 (transient receptor potential vanilloid 4) typically cause nonoverlapping diseases of either the neuromuscular or skeletal systems. However, accumulating evidence suggests that some patients develop mixed phenotypes that include elements of both neuromuscular and skeletal disease. We sought to define the genetic and clinical features of these patients. METHODS: We report a 2-year-old with a novel R616G mutation in TRPV4 with a severe neuropathy phenotype and bilateral vocal cord paralysis. Interestingly, a different substitution at the same residue, R616Q, has been reported in families with isolated skeletal dysplasia. To gain insight into clinical features and potential genetic determinants of mixed phenotypes, we perform in-depth analysis of previously reported patients along with functional and structural assessment of selected mutations. RESULTS: We describe a wide range of neuromuscular and skeletal manifestations and highlight specific mutations that are more frequently associated with overlap syndromes. We find that mutations causing severe, mixed phenotypes have an earlier age of onset and result in more marked elevations of intracellular calcium, increased cytotoxicity, and reduced sensitivity to TRPV4 antagonism. Structural analysis of the two mutations with the most dramatic gain of ion channel function suggests that these mutants likely cause constitutive channel opening through disruption of the TRPV4 S5 transmembrane domain. INTERPRETATION: These findings demonstrate that the degree of baseline calcium elevation correlates with development of mixed phenotypes and sensitivity to pharmacologic channel inhibition, observations that will be critical for the design of future clinical trials for TRPV4 channelopathies.


Assuntos
Doenças do Sistema Nervoso Periférico , Canais de Cátion TRPV , Cálcio , Canais de Cálcio/genética , Mutação com Ganho de Função , Humanos , Mutação , Doenças do Sistema Nervoso Periférico/genética , Fenótipo , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética
16.
Gene Ther ; 29(9): 513-519, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34803165

RESUMO

Numerous pediatric neurogenetic diseases may be optimally treated by in utero gene therapy (IUGT); but advancing such treatments requires animal models that recapitulate developmental physiology relevant to humans. One disease that could benefit from IUGT is the autosomal recessive motor neuron disease spinal muscular atrophy (SMA). Current SMA gene-targeting therapeutics are more efficacious when delivered shortly after birth, however postnatal treatment is rarely curative in severely affected patients. IUGT may provide benefit for SMA patients. In previous studies, we developed a large animal porcine model of SMA using AAV9 to deliver a short hairpin RNA (shRNA) directed at porcine survival motor neuron gene (Smn) mRNA on postnatal day 5. Here, we aimed to model developmental features of SMA in fetal piglets and to demonstrate the feasibility of prenatal gene therapy by delivering AAV9-shSmn in utero. Saline (sham), AAV9-GFP, or AAV9-shSmn was injected under direct ultrasound guidance between gestational ages 77-110 days. We developed an ultrasound-guided technique to deliver virus under direct visualization to mimic the clinic setting. Saline injection was tolerated and resulted in viable, healthy piglets. Litter rejection occurred within seven days of AAV9 injection for all other rounds. Our real-world experience of in utero viral delivery followed by AAV9-related fetal rejection suggests that the domestic sow may not be a viable model system for preclinical in utero AAV9 gene therapy studies.


Assuntos
Dependovirus , Atrofia Muscular Espinal , Animais , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/veterinária , Gravidez , RNA Mensageiro , RNA Interferente Pequeno , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Suínos
18.
J Neurol Neurosurg Psychiatry ; 92(11): 1186-1196, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34103343

RESUMO

BACKGROUND: We used a multimodal approach including detailed phenotyping, whole exome sequencing (WES) and candidate gene filters to diagnose rare neurological diseases in individuals referred by tertiary neurology centres. METHODS: WES was performed on 66 individuals with neurogenetic diseases using candidate gene filters and stringent algorithms for assessing sequence variants. Pathogenic or likely pathogenic missense variants were interpreted using in silico prediction tools, family segregation analysis, previous publications of disease association and relevant biological assays. RESULTS: Molecular diagnosis was achieved in 39% (n=26) including 59% of childhood-onset cases and 27% of late-onset cases. Overall, 37% (10/27) of myopathy, 41% (9/22) of neuropathy, 22% (2/9) of MND and 63% (5/8) of complex phenotypes were given genetic diagnosis. Twenty-seven disease-associated variants were identified including ten novel variants in FBXO38, LAMA2, MFN2, MYH7, PNPLA6, SH3TC2 and SPTLC1. Single-nucleotide variants (n=10) affected conserved residues within functional domains and previously identified mutation hot-spots. Established pathogenic variants (n=16) presented with atypical features, such as optic neuropathy in adult polyglucosan body disease, facial dysmorphism and skeletal anomalies in cerebrotendinous xanthomatosis, steroid-responsive weakness in congenital myasthenia syndrome 10. Potentially treatable rare diseases were diagnosed, improving the quality of life in some patients. CONCLUSIONS: Integrating deep phenotyping, gene filter algorithms and biological assays increased diagnostic yield of exome sequencing, identified novel pathogenic variants and extended phenotypes of difficult to diagnose rare neurogenetic disorders in an outpatient clinic setting.


Assuntos
Sequenciamento do Exoma , Doenças Genéticas Inatas/diagnóstico , Mutação , Doenças do Sistema Nervoso/diagnóstico , Doenças Raras/diagnóstico , Adolescente , Adulto , Idoso , Doenças Genéticas Inatas/genética , Humanos , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Doenças do Sistema Nervoso/genética , Linhagem , Fenótipo , Doenças Raras/genética , Adulto Jovem
19.
J Neuromuscul Dis ; 8(4): 633-645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33749658

RESUMO

BACKGROUND: Dominant and recessive autosomal pathogenic variants in the three major genes (COL6A1-A2-A3) encoding the extracellular matrix protein collagen VI underlie a group of myopathies ranging from early-onset severe conditions (Ullrich congenital muscular dystrophy) to milder forms maintaining independent ambulation (Bethlem myopathy). Diagnosis is based on the combination of clinical presentation, muscle MRI, muscle biopsy, analysis of collagen VI secretion, and COL6A1-A2-A3 genetic analysis, the interpretation of which can be challenging. OBJECTIVE: To refine the phenotypical spectrum associated with the frequent COL6A3 missense variant c.7447A>G (p.Lys2483Glu). METHODS: We report the clinical and molecular findings in 16 patients: 12 patients carrying this variant in compound heterozygosity with another COL6A3 variant, and four homozygous patients. RESULTS: Patients carrying this variant in compound heterozygosity with a truncating COL6A3 variant exhibit a phenotype consistent with COL6-related myopathies (COL6-RM), with joint contractures, proximal weakness and skin abnormalities. All remain ambulant in adulthood and only three have mild respiratory involvement. Most show typical muscle MRI findings. In five patients, reduced collagen VI secretion was observed in skin fibroblasts cultures. All tested parents were unaffected heterozygous carriers. Conversely, two out of four homozygous patients did not present with the classical COL6-RM clinical and imaging findings. Collagen VI immunolabelling on cultured fibroblasts revealed rather normal secretion in one and reduced secretion in another. Muscle biopsy from one homozygous patient showed myofibrillar disorganization and rimmed vacuoles. CONCLUSIONS: In light of our results, we postulate that the COL6A3 variant c.7447A>G may act as a modulator of the clinical phenotype. Thus, in patients with a typical COL6-RM phenotype, a second variant must be thoroughly searched for, while for patients with atypical phenotypes further investigations should be conducted to exclude alternative causes. This works expands the clinical and molecular spectrum of COLVI-related myopathies.


Assuntos
Colágeno Tipo VI/genética , Distrofias Musculares/genética , Pró-Colágeno/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Doenças Musculares/genética , Mutação , Fenótipo , Adulto Jovem
20.
Nat Commun ; 12(1): 1444, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664271

RESUMO

TRPV4 is a cell surface-expressed calcium-permeable cation channel that mediates cell-specific effects on cellular morphology and function. Dominant missense mutations of TRPV4 cause distinct, tissue-specific diseases, but the pathogenic mechanisms are unknown. Mutations causing peripheral neuropathy localize to the intracellular N-terminal domain whereas skeletal dysplasia mutations are in multiple domains. Using an unbiased screen, we identified the cytoskeletal remodeling GTPase RhoA as a TRPV4 interactor. TRPV4-RhoA binding occurs via the TRPV4 N-terminal domain, resulting in suppression of TRPV4 channel activity, inhibition of RhoA activation, and extension of neurites in vitro. Neuropathy but not skeletal dysplasia mutations disrupt TRPV4-RhoA binding and cytoskeletal outgrowth. However, inhibition of RhoA restores neurite length in vitro and in a fly model of TRPV4 neuropathy. Together these results identify RhoA as a critical mediator of TRPV4-induced cell structure changes and suggest that disruption of TRPV4-RhoA binding may contribute to tissue-specific toxicity of TRPV4 neuropathy mutations.


Assuntos
Neuritos/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células COS , Cálcio/metabolismo , Linhagem Celular , Chlorocebus aethiops , Drosophila , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...